解析電磁気学演習 (9) 誘電体 (Jun. 6)

学籍番号:

氏名:

例題

- [1] 誘電体 1 と 2 が図 1 のように平面で接している。この接している面の法線方向に対して角度 θ_1,θ_2 となっている電界 E_1,E_2 [V/m] があるとき、 $\varepsilon_1,\varepsilon_2$ [F/m] と θ_1,θ_2 の関係式を求めよ。
- $\begin{array}{c|c} \mathbf{\epsilon}_1 \\ \hline \mathbf{\epsilon}_2 \\ \hline \\ \mathbf{E}_1 \\ \hline \\ \mathbf{E}_2 \\ \end{array}$
- 図 1: 境界
- ② 十分面積の大きい平行平板コンデンサ (電極間距離 d [m]) の電極間に、厚さ t [m] の 誘電体 1 と厚さ (d-t) [m] の誘電体 2 が図 2 のように装荷されている。
 - (a) 電極の単位面積当たりの静電容量 C_0 $[{
 m F/m^2}]$ を求めよ。
 - (b) 電位差 V_0 [V] を与えたとき、下部電極から距離 z [m] の位置における電位 V(z) [V] を求めよ。下部電極の電位を 0 V とする。

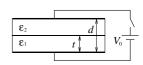


図 2: コンデンサ

(東工大院 理工学研究科 電気電子工学専攻・平成 21 年度より)

① 図3のように、長さ L [m]、半径 a [m] の円柱状の内部導体と、厚さを無視できる長さ L [m]、半径 c [m] の円筒状外部導体がある。内外の導体の中心軸は一致している。中心軸から b [m] をを境界として二種類の一様な誘電体で内外導体間を満たし、内側 $(a \le \rho < b)$ および外側 $(b \le \rho < c)$ の領域の誘電率をそれぞれ $\varepsilon_1, \varepsilon_2$ [F/m] とする。内外導体間に電位差をかけ、内部導体に +Q [C]、外部導体に -Q [C] が蓄えられた。 $L \ll c$ とし、円筒端部での電界分布の影響は無視する。

東工大 工学院 電気電子系・H29/4 および H28/9 入試想定問題より (http://www.titech.ac.jp/graduate_school/news/pdf/17_H2904.H2809_sotei_denkidenshi.pdf)

(a) $a \le \rho < b, b \le \rho < c$ における電束密度の大きさを求めよ。

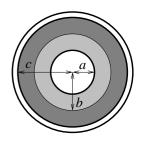
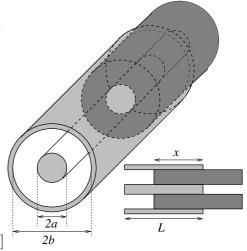


図 3: 同心円状に誘電体 が異なる長さ *L* の 円筒型コンデンサ


(b) $a \le \rho < b, b \le \rho < c$ における電界の大きさを求めよ。

(c)	- m -	道休の)辞霊突長	C [F	〕を求めよ。
101		≠ ₩V	/	. (/ 11	してハリカヘ

 (d) 誘電体境界に生じる面分極電荷密度 σ_p $[\mathrm{C/m^2}]$ を求めよ。

2 半径 $a\ [\mathrm{m}]$ の円柱状導体と内半径 $b\ [\mathrm{m}]$ の中空円筒状導体が図 $4\ \mathrm{cm}$ すように中心軸を同一として配置されている。内外導体の長さを $L\ [\mathrm{m}]$ とする。 (東工大院 理工学研究科 電気電子工学専攻・平成 $20\ \mathrm{年度}$ より)

(a) 内外導体間を真空として、電位差 V_0 [V] を与えて電荷を蓄えた。 このとき蓄えられる電荷 Q_0 [C] を求めよ。

(b) 上の状態でスイッチを切り離し、比誘電率 ε_r の誘電体で x(< L) $[{f m}]$ 2b だけ満たした。このときの内外導体間の電位差 V(x) $[{f V}]$ を求めよ。図 4: 一部に誘電体が装荷された円筒型コンデンサ